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Abstract
We present an open-loop (bang–bang) scheme which drives an open two-level
quantum system to any target state, while maintaining quantum coherence
throughout the process. The control is illustrated by a realistic simulation for
both adiabatic and thermal decoherence. In the thermal decoherence regime,
the control achieved by the proposed scheme is qualitatively similar, at the
ensemble level, to the control realized by the quantum feedback scheme
of Wang, Wiseman and Milburn (2001 Phys. Rev. A 64 063810) for the
spontaneous emission of a two-level atom. The performance of the open-
loop scheme compares favourably against the quantum feedback scheme with
respect to robustness, target fidelity and transition times.

PACS numbers: 03.67.Hk, 03.65.−w, 89.70.+c

1. Introduction

Over the last few years, a number of open-loop (bang–bang) control schemes have been
proposed to eliminate the effects of decoherence for a single two-level quantum system in
contact with the environment, by using an external control [1–4]. This type of control,
pioneered by Lloyd and Viola (see [1–3] and references therein), relies on applying frequent
control pulses to the two-level system in order to cancel the decoherence effects of the system–
environment interaction. Vitali and Tombesi [4] have also considered applying a sequence
of frequent parity kicks, as well as an appropriate stochastic modulation, to achieve the
same goal. It has been shown that, in either approach, the decoherence of the system can
be effectively suppressed if the pulse rate is much higher than the decoherence rate due to
the system–environment interaction. In other words, a fast rate control ‘freezes’ decoherence
in a manner similar to the quantum Zeno effect.

Alternative approaches have also been considered to eliminate or mitigate the undesirable
effects of decoherence in open quantum systems, e.g., decoherence free subspaces (DFS)
[5, 6], quantum error correction [7–9] and quantum feedback [10, 11].
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Inspired by Lloyd and Viola’s seminal results, we have recently proposed a new
implementation of open-loop quantum control [12], which tailors control pulses more
efficiently, by taking into account the possible knowledge of the decoherence function. Several
new features of the scheme are (i) decoherence and control act simultaneously within a realistic
model that includes them from first principles; (ii) the required control is directly related to and
calculated from the decoherence effects, which presents the practical advantage of maintaining
the frequency and amplitude of the required controls at minimal levels; and (iii) the effect of
imperfect pulses on the efficiency of the control was assessed and found to be quite tolerable,
even for rather large noise amplitudes. In this paper, our aim is to minimize the effect of
decoherence due to interactions between the quantum system and its environment, while
concomitantly driving the system from an initial state to an arbitrary target state.

Recently, Khaneja et al [13] used optimal control to steer a quantum system to a target
state in a minimum time, while assuming that the effects of relaxation are negligible over
that timescale. They have also demonstrated that controllability for a closed quantum system
is equivalent to the universality that is demanded from a quantum computer. In follow-on
work, Khaneja et al [14] used optimal control to minimize the difference between the actual
density matrix at the final time and the target density matrix, for two spins in the presence
of relaxation. We note that their relaxation model relies on phenomenological decay rates to
describe general decoherence processes, without any explicit reference to the environment,
and the control is applied a posteriori, to the ‘reduced’ equations. This is in contrast with the
present scheme, where the interaction with the environment and the control are accounted for
from first principles, in the full Hamiltonian description of the system.

We illustrate our approach for pure states of a two-level system, i.e., a qubit, which is
in contact with the environment. Both the initial and the target states are known a priori,
and the unitary evolution of the two-level system is driven by frequent control pulses that are
customized, if the decoherence function is known. This is the case—at least in principle—if
one has an explicit model for the environment and its interaction with the qubit.

Using numerical simulations, we show explicitly that the qubit can be driven between
any two points (initial and target states) on the curve determined by the intersection of either
the x–z or the y–z planes with the Bloch sphere. In general, the state of the qubit can be
driven between any two points on the surface of the Bloch sphere by using a sequence of two
different control Hamiltonians.

In one particular instance, namely for thermal decoherence and external control
proportional to the σy polarization, the system we consider is formally similar to the system
used in the quantum feedback scheme proposed by Wang et al [10], which models the
evolution of a two-level atom that emits spontaneously, using stochastic quantum trajectories.
Photocurrent feedback from perfect homodyne detection of spontaneous emission is used to
alter the atom–environment dynamics, to drive the atom to a pure target state. Of course, the
feedback delay time has to be shorter than the spontaneous emission timescale, in order to
successfully maintain the atom in the target state.

Whenever warranted, we shall discuss the performance of the proposed open-loop control
in comparison with the performance of quantum feedback control, in order to understand the
limitations of each scheme, and characterize the regimes in which they work best. In so doing,
we also generalize the original feedback control scheme proposed by Wang et al, by using
different control Hamiltonians.

The remainder of the paper is organized as follows. In section 2, we give an overview
of the spin-boson model used in our targeting control scheme, and in section 3 we outline the
control strategy employed to achieve a particular target state. In section 4, we briefly review
the quantum feedback scheme proposed by Wang et al [10] for a spontaneously emitting
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two-level atom. Finally, in section 5, we present the results of our numerical simulations, and
discuss them in comparison with the results of the quantum feedback scheme.

2. The model

The spin-boson model [15] is often used to describe a two-level system {|1〉, |2〉} interacting
with a large number of boson modes representing the environment. The complete
Hamiltonian [12],

H = Hs + He + Hi + Hc (1)

accounts for the two-level system, the environment, the interaction between the two and an
external control. The Hamiltonian of the two-level system is

Hs =
2∑

i=1

PiiEi (2)

where Pii denote the projection operators Pii = |i〉〈i|, and Ei are the corresponding energies.
We take E1 = −h̄ω0/2 and E2 = h̄ω0/2, so that Hs = h̄ω0σz. The Hamiltonian of the
environment is

He = h̄

∞∑
q=1

ω0qa
†
qaq (3)

where aq, a
†
q are the annihilation and creation operators respectively, for the qth boson mode,

and ω0q is the corresponding frequency.
The interaction between the two-level system and the environment,

Hi = −h̄ε(αxσx + βzσz)

∞∑
q=1

(
��

qaq + �qa
†
q

)
(4)

is responsible for the quantum decoherence. Adiabatic decoherence (αx = 0, βz = 1) acts
on a short timescale, leading to the decay of the off-diagonal density matrix elements. On
a longer timescale, thermal decoherence (αx = 1, βz = 0) changes all of the density matrix
elements, and leads to the exponential decrease of the excited state population of the two-
level system. These two timescales can be accounted for by adjusting the relative magnitude
of the coefficients, αx and βz. The interaction with the environment is parametrized by ε

(whose magnitude indicates the strength of the coupling) and can result in a phase flip or
a bit flip (a bit–phase flip can also be obtained either by combining the two effects or by
including a σy term). However, from a formal viewpoint, the effects of σx and σy in the
interaction Hamiltonian are essentially similar, and we shall not consider the latter as far as
Hi is concerned.

In general, the control Hamiltonian is proportional to a linear superposition of the pseudo-
spin operators σx and σy ,

Hc = −h̄�F V (t)[cxσx + cyσy] (5)

which can be specified by adjusting the phase of the driving field. The control is a classical
coherent driving field, which is applied as a series of frequent pulses, V (t). We assume that
these pulses act strongly upon the two-level system, via its polarization, but do not affect the
environment significantly.

The dynamics of the two-level system is expressed in terms of parameters normalized to
the Rabi frequency, �F . The time evolution is described in terms of dimensionless Rabi time



7132 C D’Helon et al

units, τ = �F t , and all the frequencies, namely ωq = ωoq/�F , ω = ωo/�F , gq = �q/�F

and ω12 = �12/�F , are also renormalized with respect to the Rabi frequency. The frequency
�12 is the transition frequency between the energy levels of the two-level system.

To simplify the calculations and render them more transparent, it is convenient to
write the evolution of the system in the interaction representation, and consider the
adiabatic and thermal decoherence regimes separately. The unitary evolution operator in the
interaction representation, UI , is related to the unitary evolution operator in the Schrödinger
representation, U, by

UI (s, e, τ ) = eiH0τ/h̄U(s, e, τ ) (6)

where H0 = Hs + He.
In this representation, the evolution of the density matrix of the whole system (qubit plus

environment) reads

∂ρ

∂τ
= − i

h̄
[HI, ρ] (7)

where the interaction Hamiltonian contains both the interaction with the environment and the
applied control,

HI = HIc + HIi (8)

HIi =
{−εh̄σz

∑
q

(
g�

qaq e−iωqτ + gqa
†
q eiωqτ

)
−εh̄

[σx +iσy

2

∑
q g�

qaq e−i(ω12−ωq)τ + σx−iσy

2

∑
q gqa

†
q ei(ω12−ωq)τ )

] (9)

for the adiabatic and thermal decoherence regimes respectively, and

HIc = − h̄

2
V (τ)[Cxσx + Cyσy] (10)

where

Cx = cx cos(ω0t) + cy sin(ω0t) (11)

Cy = −cx sin(ω0t) + cy cos(ω0t). (12)

These interaction-picture Hamiltonians have been calculated by using the rotating wave
approximation, and assuming zero detuning, δ = ω12 − ω = 0.

The evolution equation for ρ admits the formal solution

ρ(s, e, τ ) = UI (s, e, τ )ρ(s, e, 0)U
†
I (s, e, τ ) (13)

where the evolution operator satisfies the equation

dUI(s, e, τ )

dτ
= − i

h̄
HIUI (s, e, τ ) (14)

given the initial condition UI (s, e, 0) = 1. The formal solution of equation (14) is [16]

UI (s, e, τ ) = T
[

exp

{
− i

h̄

∫ τ

0
dτ ′ HI(τ

′)
}]

(15)

where T [ ] represents the time-ordering operator. The state of the system at τ = 0 is assumed
to be described by the density matrix,

ρ(s, e, 0) = ρ(s, 0) ⊗ ρ(e, 0) (16)
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where the environment is in thermal equilibrium,

ρ(e, 0) =
∏
q

ρq(e, 0) (17)

ρq(e, 0) =
[
1 − e− h̄ωoq

kT

]−1 ∑
nq

e− h̄ωoq

kT
nq |nq〉〈nq | (18)

and

ρ(s, 0) =
2∑

i,j=1

ρij (0)Pij . (19)

Since the various terms in the interaction Hamiltonian HI do not commute, the complete
evolution operator, UI (s, e, τ ), cannot be calculated exactly, except in very special cases. By
writing the interaction Hamiltonian as a sum of two non-commuting operators, HI = H1 +H2,
we can expand the evolution operator into an infinite product of exponentials,

UI (s, e, τ ) = exp

(
− i

h̄

∫ τ

0
dt H1(t)

)
× exp

(
− i

h̄

∫ τ

0
dtH2(t)

)

× exp

(
−

( i

h̄

)2
∫ τ

0
dt

∫ t

0
dt ′[H1(t),H2(t

′)]
)

× · · · (20)

using the general Baker–Hausdorff theorem [17]. Assuming that the incremental effects of
the control and interaction Hamiltonians are relatively small, we approximate the evolution
operator to the first order in the magnitude of the control pulses, V (τ), and the coupling
strength parameter, ε, of the system–environment interaction.

We consider the evolution operator, UI (s, e, τ ), and the density matrix elements for the
adiabatic and thermal decoherence regimes, separately. The latter case describes population
changes in the two-level system, and encompasses the evolution of a spontaneously emitting
atom, in the quantum feedback scheme proposed by Wang et al [10].

2.1. Adiabatic decoherence regime

The adiabatic decoherence regime describes phase decay of the two-level system. For
the sake of simplicity, we assume that the control Hamiltonian is proportional to σx , i.e.
(Cx = 1, Cy = 0),

HIc = − h̄

2
V (τ)σx (21)

and we identify the control Hamiltonian,HIc, with H1, and the system–environment interaction
Hamiltonian, HIi , with H2. Therefore, by neglecting the commutator terms in equation (20)
the evolution operator can be approximated by

UI (s, e, τ ) ≈ exp

{
− i

h̄

∫ τ

0
dt HIc(t)

}
× exp

{
− i

h̄

∫ τ

0
dt HIi(t)

}
. (22)

This approximation is correct to first order in the magnitude of the control and interaction
Hamiltonians.

Performing the time integrals in the exponents, we obtain

UI (s, e, τ ) = exp{iσxI (τ )} × exp{−2σzQ−(τ )} (23)

where

I (τ ) = 1

2

∫ τ

0
dτ ′ V (τ ′) (24)
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Q−(τ ) = ε

2

∑
q

(
Mqa

†
q − M�

qaq

)
(25)

and

Mq(τ) = gq

ωq

(1 − eiωqτ ). (26)

We obtain the following approximate expressions for the evolution operator and its adjoint,

UI (s, e, τ ) = E0 + iExσx + Eyσy + Ezσz (27)

and

U
†
I (s, e, τ ) = E0 − iExσx − Eyσy − Ezσz (28)

where

E0 = cosh(2Q−(τ )) cos(I (τ )) (29)

Ex = cosh(2Q−(τ )) sin(I (τ )) (30)

Ey = −sinh(2Q−(τ )) sin(I (τ )) (31)

Ez = −sinh(2Q−(τ )) cos(I (τ )). (32)

The density matrix elements of the reduced two-level system can then be solved explicitly
by tracing out the environmental modes,

ρij (s, τ ) = Tre

{
2∑

k,l=1

〈i|UIPklρ(e, 0)U−1
I |j 〉ρkl(0)

}
(33)

for i, j = 1, 2, assuming that the environment is initially in a thermal state. We obtain

ρ11 = ρ11(0) cos2 I + ρ22(0) sin2 I − i[ρ12(0) − ρ21(0)] e−gad cos I sin I (34)

ρ22 = ρ22(0) cos2 I + ρ11(0) sin2 I + i[ρ12(0) − ρ21(0)] e−gad cos I sin I (35)

ρ12 = ρ12(0) e−gad cos2 I + ρ21(0) e−gad sin2 I + i(ρ22(0) − ρ11(0)) cos I sin I (36)

ρ21 = ρ21(0) e−gad cos2 I + ρ12(0) e−gad sin2 I − i(ρ22(0) − ρ11(0)) cos I sin I (37)

where I = I (τ ), and

gad := gad(τ ) = γ

∫ ∞

0
dω G(ω)(1 − cos ωτ) coth

β0ω

2
(38)

is the adiabatic decoherence function obtained by Palma [18]. The dimensionless constant γ

depends on the dipole moment of the two-level system and on the Rabi frequency.

2.2. Thermal decoherence regime

The thermal decoherence regime describes population changes in the two-level system, and
encompasses the evolution of a spontaneously emitting atom. We use the general form of the
control Hamiltonian in equation (10), and we decompose the interaction Hamiltonian HI into
two operators, H1 and H2, which are proportional to σx and σy , respectively.

By neglecting the commutator terms in equation (20), the evolution operator can be
approximated by

UI (s, e, τ ) ≈ exp

{
− i

h̄

∫ τ

0
dt

(
HIcx

(t) + HIix (t)
)} × exp

{
− i

h̄

∫ τ

0
dt

(
HIcy

(t) + HIiy (t)
)}
(39)
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where HIcx
,HIix and HIcy

,HIiy correspond to the terms in the control Hamiltonian HIc and
the system–environment interaction Hamiltonian HIi , which are proportional to σx and σy ,
respectively. This approximation is correct to first order in the magnitude of the control and
interaction Hamiltonians.

Performing the time integrals in the exponents, we get

UI (s, e, τ ) = exp{iCxσxI (τ ) − σxQ−(τ )} × exp{iCyσyI (τ ) + iσyQ+(τ )} (40)

where

Q+(τ ) = ε

2

∑
q

(
Mqa

†
q + M�

qaq

)
(41)

Mq(τ) = gq

ω12 − ωq

(1 − ei(ω12−ωq)τ ) (42)

and I (τ ),Q−(τ ) are defined by equations (24) and (25).
We obtain the following approximate expressions for the evolution operator and its inverse,

UI (s, e, τ ) = E0 + iExσx + Eyσy + Ezσz (43)

and

U
†
I (s, e, τ ) = E0 − iExσx − iEyσy + iEzσz (44)

where

E0 = cos(CxI (τ ) + iQ−(τ )) cos(CyI (τ ) + Q+(τ )) (45)

Ex = sin(CxI (τ ) + iQ−(τ )) cos(CyI (τ ) + Q+(τ )) (46)

Ey = cos(CxI (τ ) + iQ−(τ )) sin(CyI (τ ) + Q+(τ )) (47)

Ez = sin(CxI (τ ) + iQ−(τ )) sin(CyI (τ ) + Q+(τ )). (48)

To calculate U
†
I (s, e, τ ), we have used the fact that Q−(τ ) and Q+(τ ) commute in the first-order

approximation of the coupling strength parameter, ε.
The environment modes are then traced out to obtain the elements of the reduced density

matrix, in the same way as for the adiabatic case (see equation (33)), assuming as before, that
the environment is initially in a thermal state,

ρ11 = 1
2 + 1

2 (ρ11(0) − ρ22(0)) e−2gth cos(2CxI) cos(2CyI)

− Re{ρ12(0)} e−2gth cos(2CxI) sin(2CyI) − i Im{ρ12(0)} e−gth sin(2CxI) (49)

ρ12 = [Re{ρ12(0)} cos(2CyI) + Im{ρ12(0)} cos(2CxI)] e−gth

+ i Re{ρ12(0)} sin(2CxI) sin(2CyI) e−2gth

+ 1
2 (ρ11(0) − ρ22(0))[e−gth sin(2CyI) − i e−2gth sin(2CxI) cos(2CyI)] (50)

ρ21 = [Re{ρ21(0)} cos(2CyI) + Im{ρ21(0)} cos(2CxI)] e−gth

− i Re{ρ21(0)} sin(2CxI) sin(2CyI) e−2gth

+ 1
2 (ρ11(0) − ρ22(0))[e−gth sin(2CyI) + i e−2gth sin(2CxI) cos(2CyI)] (51)

ρ22 = 1
2 − 1

2 (ρ11(0) − ρ22(0)) e−2gth cos(2CxI) cos(2CyI)

+ Re{ρ12(0)} e−2gth cos(2CxI) sin(2CyI) + i Im{ρ12(0)} e−gth sin(2CxI) (52)

where the thermal decoherence function, gth, is given by

gth := gth(τ ) = γ

∫ ∞

0
dω

1 − cos[(ω12 − ω)τ ]

(ω12 − ω)2
ω3 coth(β0ω/2) e−ω/ωc . (53)
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3. Control strategy

The control strategy in [12] was to continually adjust the control pulses in a customized
fashion to counter the effects of the decoherence and maintain the density matrix elements
unchanged. In this paper, the goal is to drive the qubit to the final target state while, at the same
time, maintaining quantum coherence throughout the process. The reduced density matrix
of the qubit depends on the known decoherence function and the applied control, which is
determined by equating each element of the actual reduced density matrix, ρij , in turn, with
the corresponding element of the density matrix for the target state.

Since in general, a large jump in the state of the qubit cannot be achieved in one step, the
qubit is driven between the initial and target states via a number of intermediate states. This
ensures controllability, i.e. the existence of feasible solutions for the proposed control.

Each control cycle contains eight control steps, since there are eight real equations to
solve, for the reduced density matrix of the two-level system. The sequence of eight real
transcendental equations is solved in a prescribed order. While this particular order is not
essential, we shall use it consistently here, as shown below, to make it easier to follow our
strategy. The algorithm is applied identically for either the adiabatic or the thermal case, thus
we describe it for a generic decoherence function, denoted by g.

The intermediate states spanning the trajectory between the initial and target values can be
chosen explicitly, the simplest way being to interpolate linearly between the initial and target
states, or alternatively, they can be selected by minimizing the absolute difference between the
initial and target values for a restricted range of control pulses.

In the first cycle of eight time steps, we start by driving the first component ρ11R(0) to a
new intermediate value, ζ (1)

11R , using the control pulse I (1), which is a solution of the equation
ρ11R(1) = ρ11R(g(1), I (1)) = ζ

(1)

11R . After the first time step, all the other components have
been modified by the effect of the decoherence, g(1), and the effect of the control pulse, I (1),
so the values of the matrix elements are given by

ρ11R(1) = ρ11R(g(1), I (1)) = ζ
(1)
11R (54)

ρ11I (1) = ρ11I (g(1), I (1)) (55)

ρ12R(1) = ρ12R(g(1), I (1)) (56)

ρ12I (1) = ρ12I (g(1), I (1)) (57)

ρ21R(1) = ρ21R(g(1), I (1)) (58)

ρ21I (1) = ρ21I (g(1), I (1)) (59)

ρ22R(1) = ρ22R(g(1), I (1)) (60)

ρ22I (1) = ρ22I (g(1), I (1)). (61)

During the next seven time steps, the control strategy is implemented in a similar
fashion. For example, at the second time step, we consider the equation for ρ11I (2) =
ρ11I (g(2), I (1) + I (2)). For relatively short time steps, and by the semigroup property, this
is also equal to ζ

(1)

11I (g(1), I (2)). To determine the control pulse required to set ρ11I (2) equal
to a new value ζ

(1)

11I , we find the control I (2) which solves the equation ρ11I (2) = ζ
(1)

11I . After
applying this control, the values of the matrix elements at the second time step are given by

ρijR/I (2) = ρijR/I (g(2), I (1) + I (2)). (62)

By the end of the first cycle of eight time steps, the state has shifted slightly towards the
first intermediate state, ζ (1). The final values of the eight components at the end of the first
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cycle become the initial values for a second cycle of eight time steps, which then aims to drive
the qubit to the second intermediate state, ζ (2), using the same method.

This procedure is repeated until the final target state is reached, and is then maintained for
as long as required. The total transition time to drive the qubit from the initial to the target state
depends on the number of intermediate states and the frequency of the control pulses. After
the initial transient, the controls stabilize and the whole control cycle repeats periodically.

4. Quantum feedback control

In this section, we shall briefly review the quantum feedback scheme proposed by Wang et al
[10]. The theory of quantum feedback has been developed in the last ten years [19], and
recently there has been growing interest in using it to cancel the effects of decoherence. This
can be achieved by using the continuous measurement record resulting from the coupling of
a system to its environment, to cancel out the effect of the interaction with the environment.

The system considered by Wang et al [10] is a two-level atom, which is driven by
a resonant classical field of strength α ∈ (−∞,∞). The lowering operator is denoted
by σ = |1〉〈2|; its adjoint σ † = |2〉〈1| is the raising operator, and performs the inverse
operation. The environment is represented by electromagnetic modes into which the atom
emits spontaneously at a decay rate γ . The reduced master equation describing this system,
with no feedback, is derived from the interaction Hamiltonian [20],

HI = h̄ασy + h̄

{
σ †

∑
q

g∗
qaq + σ

∑
q

gqa
†
q

}
(63)

which is identical to the interaction Hamiltonian considered in section 2.2 for the thermal
decoherence regime. Phase decay of the two-level atom, due to atomic collisions or other
processes, has been ignored in the quantum feedback scheme, i.e. there is no σz-coupling for
the system–environment interaction. The reduced master equation is given by

ρ̇ = −iα[σy, ρ] + D[
√

γ σ ]ρ (64)

where the Lindblad superoperator D is

D[A]B = ABA† − {A†A,B}/2. (65)

We note that the same reduced master equation can be obtained for the spin-boson model
we presented in section 2, in the thermal decoherence regime, using a control Hamiltonian
proportional to σy .

The effect of the classical driving field α is to rotate the state of the atom around the y-axis,
in Bloch space. The Bloch space coordinates are defined by the vector (x, y, z), related to the
state density matrix by

ρ = 1
2 (I + xσx + yσy + zσz). (66)

The distance from the centre of the Bloch sphere, r =
√

x2 + y2 + z2, measures the purity of
the state, with r = 1 for a pure state and r = 0 for a maximally mixed state. The stationary
solutions for the driven two-level atom,

xss = 4αγ

γ 2 + 8α2
(67)

yss = 0 (68)
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zss = −γ 2

γ 2 + 8α2
(69)

are limited to the lower half of the Bloch sphere (z < 0), in the x–z plane, and in general have
low purity, as shown in figure 2 of [10]. The ground state with no driving is the only stationary
solution that is a pure state. We note that in general, the interaction Hamiltonian due to the
classical driving field can be taken as a linear superposition of σx and σy , as we have done
for our control Hamiltonian HIc. Experimentally, this superposition of polarizations can be
adjusted by controlling the phase of the classical driving field.

In their scheme, Wang et al assume that all of the fluorescence from the atom is collected
and used in a homodyne detection set-up (see figure 1 in [10]), to measure the interference
between the system and a local oscillator. In the ideal limit of large local oscillator amplitude,
the point process of photocounts is changed into a continuous photocurrent with white noise.
The interference is measured by the (normalized) difference between the recorded mean
photocurrents,

�I(t) = √
γ 〈σx〉c(t) + ζ(t) (70)

given that the phase of the local oscillator is set to zero. The subscript c means conditioned,
as system averages are conditioned on the previous photocurrent record. The last term, ζ(t),
represents Gaussian white noise so that

ζ(t) dt = dW(t) (71)

an infinitesimal Wiener increment defined by

{dW(t)}2 = dt (72)

E[dW(t)] = 0. (73)

The conditioning process can be made explicit by calculating the changes of the system
state in response to the measured photocurrent, using a stochastic Schrödinger equation,

d|ψc(t)〉 = Âc(t)|ψc(t)〉 dt + B̂c(t)|ψc(t)〉 dW(t) (74)

which describes possible quantum trajectories, assuming that the initial state is pure at some
point in time. The operator Âc(t) for the drift term and the operator B̂c(t) for the diffusion
term are both conditioned, as they depend on the system average

〈σx〉c(t) = 〈ψc(t)|σx |ψc(t)〉. (75)

Of course, from the point of view of ensemble averages, the two-level atom still obeys the
same master equation given above in equation (64).

The difference between the recorded mean photocurrents, �I(t), is used to control the
dynamics of the state in the x–z plane. The atom–environment dynamics is altered by adding
a photocurrent feedback, λ�I (t), to the amplitude of the classical driving field, using an
electro-optic amplitude modulator. The effect of this feedback term is to change the drift,
Âc(t), and the diffusion, B̂c(t), operators, such that the feedback-modified master equation
describing the quantum feedback scheme becomes

ρ̇ = −iα[σy, ρ] + D[
√

γ σ − iλσy ]ρ. (76)
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The two-level atom can be driven to, and subsequently maintained in an arbitrary pure
target state ˆ|θ〉, in the x–z plane,

ˆ|θ〉 = cos

(
θ

2

)
|2〉 + sin

(
θ

2

)
|1〉 (77)

by ensuring that only the phase of ˆ|θ〉 changes under this evolution:

ˆ|θ〉 + d ˆ|θ〉 = ei dχ ˆ|θ〉. (78)

In terms of the stochastic Schrödinger equation, this implies that the deterministic (drift) and
noise (diffusion) terms are separately proportional to ˆ|θ〉,

Âc(t) dt ˆ|θ〉 ∝ ˆ|θ〉 (79)

B̂c(t) dW(t)] ˆ|θ〉 ∝ ˆ|θ〉 (80)

which can be achieved by setting the values of the driving and feedback parameters to

α = γ /4 sin θ cos θ (81)

λ = −
√

γ

2
(1 + cos θ). (82)

A stability analysis of the scheme shows that the pure state ˆ|θ〉 can be achieved for all θ ,
with the exception of θ = ±π/2, which correspond to equal superposition states on the
equator of the Bloch sphere. The driving and feedback parameters for these special values are

degenerate, thus the state is driven to a mixture of ˆ∣∣π
2

〉
and

∣∣− π̂
2

〉
.

The quantum feedback scheme described above relies on two major assumptions, that are
at present impossible to achieve experimentally, namely (i) perfect detection of spontaneous
emission and (ii) zero feedback delay time.

As the efficiency of the homodyne detection of resonance fluorescence from the two-
level atom is decreased from perfect efficiency, the performance of the scheme degrades very
quickly, except for target states that are close to the ground state. In general, detection with
non-unit efficiency gives a stationary solution that represents a mixed state, rather than the
desired pure target state. Wang et al have shown that the deviation from a pure target state is
noticeable even for relatively high (95%) efficiencies, especially for states close to the equal
superposition states at the equator of the Bloch sphere, which are inherently unstable.

Similarly, in order to successfully achieve a pure target state, the feedback delay time τ

has to be much shorter than the timescale corresponding to the spontaneous emission rate. This
limit corresponds to the Markovian regime, which allows the evolution equation to be written
in the form of a master equation. If the feedback delay time becomes too large, τ � 0.02γ −1,
the performance of the quantum feedback scheme suffers a degradation which is qualitatively
similar to that observed for inefficient detection. For example, if we try to stabilize the atom
in the excited state, in the non-Markovian regime, the purity of the average state is given by
r ≈ 1 − 4γ τ . Of course, the deviation from a pure target state is much more noticeable for
states close to the equal superposition states at the equator of the Bloch sphere.

We have verified that the quantum feedback scheme works as intended, in the regime of
unit detection efficiency and zero feedback delay, by simulating typical quantum trajectories
for the feedback master equation in (76). The transition time, t0, required to drive the atom
from an initial state to the target state, in the x–z plane, is roughly proportional to the distance
between these states, as measured by the difference in the angle θ . The longest single-transition
times (≈(4 ± 1)γ −1) correspond to driving the atom between two states that are diametrically



7140 C D’Helon et al

(a)
0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

time (γ-1)

(b)

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

time (γ-1)

θ

θ

Figure 1. The two-level atom is driven from the ground state, |1〉 ≡ ˆ|π〉, to the excited state,
|2〉 ≡ ˆ|0〉. The single quantum trajectories (crossed points) shown in (a) and (b) represent the two
different types of paths that the state of the atom may follow. The two paths correspond to opposite
directions around the Bloch sphere, passing through the (a) symmetric or (b) anti-symmetric
superposition of the ground and excited states. The fidelity of ˆ|θ〉 compared to the target state ˆ|0〉
is also shown (solid line) on the graphs. The transition time, t0, defined here as the time taken to
reach a state fidelity |〈θ̂ |0̂〉|2 � 0.99 is (a) t0 = 4.0γ −1 and (b) t0 = 3.6γ −1.

opposite on the Bloch sphere, e.g., from the ground state to the excited state, as shown in
figure 1.

5. Results and comparison

We first summarize the results of our open-loop control scheme, and then, whenever warranted,
we present a comparison between our results, and the results of the quantum feedback scheme
proposed by Wang et al [10] for a two-level atom.
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Figure 2. The non-zero density matrix elements of a qubit driven from the ground state, |1〉, to
the symmetric superposition state, (|1〉 + i|2〉)/√2. All of the density matrix elements show a
monotonic transition to their target values. This driving used six intermediate states, with only
one control cycle allocated for each intermediate state, and the maximum allowed strength of each
control pulse was set by Imax = 0.1. Note that the elements change in a noticeably discrete way
during the transition period, and the fidelity of the final state is greater than 0.99.

5.1. Results for open-loop control

First, we present the open-loop results for the evolution in the adiabatic decoherence regime,
which corresponds to phase decay of the two-level system. Using a control Hamiltonian
proportional to σx , the qubit can be driven to any target state on the surface of the Bloch
sphere, in the y–z plane. Only a small number of intermediate states are required to obtain
robust control. The graphs in figure 2 illustrate the driving of the qubit from the ground state
|1〉 to the symmetric superposition state (|1〉 + i|2〉)/√2. The qubit was then driven to the
excited state, and back to the ground state via the conjugate anti-symmetric superposition
(|1〉 − i|2〉)/√2, to complete a continuous circle around the Bloch sphere.

It is also possible to jump directly from the initial to the target state in a transition time as
small as one control cycle, if the control pulses are strong enough. However, this can break
the assumption that the magnitude of the control Hamiltonian is small, and moreover gradual
driving improves the smoothness of the transition, albeit at the expense of longer transition
times.

We have not simulated the control for the adiabatic decoherence regime using other control
Hamiltonians, as there are no analogous results for the quantum feedback control of phase
decay, either by itself, or in conjunction with spontaneous emission.
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Figure 3. The non-zero density matrix elements of a qubit driven from the ground state, |1〉, to the
excited state, |2〉. The population elements, Re{ρ11} and Re{ρ22}, show a monotonic transition,
whereas the coherences, Re{ρ12} and Re{ρ21}, increase to 1

2 as they approach the superposition
state on the equator of the Bloch sphere, and then decrease back to zero. This driving used 100
intermediate states, with only two control cycles allocated for each intermediate state, and the
maximum allowed strength of each control pulse was set by Imax = 0.01. All of the density matrix
elements change smoothly in the transition period, and the fidelity of the final state is greater than
0.99.

Next, we present the open-loop results for the evolution in the thermal decoherence
regime, when the control Hamiltonian is proportional to σy . This corresponds to the ensemble
evolution of the spontaneously emitting two-level atom (without feedback) in the quantum
feedback scheme. The numerical simulations used to implement our control strategy from
section 3, have assumed the ideal scenario: the decoherence function is known exactly, and the
time step between control pulses for the open-loop control is small relative to the decoherence
rate.

The graphs in figure 3 illustrate the driving of the qubit from the ground state |1〉 to the
excited state |2〉 via the symmetric superposition (|1〉 + |2〉)/√2, cf figure 1(a) for the same
driving in the quantum feedback scheme. One hundred intermediate states were used in this
simulation to give a very smooth transition in a time t0 ≈ 1250�t , where �t is the time
interval between control pulses. The qubit was then driven back to the ground state via the
anti-symmetric superposition (|1〉−|2〉)/√2, to complete a full circle around the Bloch sphere.
We note that returning to the ground state with exactly the same phase, actually requires two
complete circles around the Bloch sphere.

In general, our simulations of open-loop control in the thermal decoherence regime, show
that the qubit can be driven to any pure state in the x–z plane of the Bloch sphere, using a
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Figure 4. The non-zero density matrix elements of a qubit driven from the ground state, |1〉, to the
excited state, |2〉. Only ten intermediate states were used for this driving, with two control cycles
allocated for each intermediate state, and the maximum allowed strength of each control pulse was
set by Imax = 0.1. All of the (non-zero) density matrix elements display large fluctuations in the
transition period, and the fidelity of the final state is less than 0.99.

control Hamiltonian proportional to σy . Inevitably, the fidelity of the target state thus achieved
fluctuates with each control cycle, but it stays close to 1, given that the maximum allowed
strength of the control pulses is relatively small.

The smoothness and length of the transition to the target state are determined by the
number of intermediate states, as well as the maximum allowed strength of the control pulses.
The graphs in figure 4 illustrate explicitly the same driving of the qubit as in figure 3, but using
only ten intermediate states, and allowing the control pulses to be up to ten times stronger
than before. We note that in the thermal decoherence regime, there is an absolute minimum
number of intermediate states, of the order of ten states, to ensure successful control of the
qubit, for the longest type of single transition.

The transition time from the initial state to the target state depends not only on the number
of intermediate states, and the maximum allowable strength of the control pulses, but also on
the magnitude of the time step, �t , between control pulses. The minimum times we observed
for the longest single transition of the qubit, e.g. from the ground state to the excited state,
are of the order of ten control cycles, for the type of low-quality results shown in figure 4. Of
course, the transition times grow longer as the performance of the open-loop scheme improves,
e.g., the driving shown in figure 3 requires a transition time of the order of 100–200 control
cycles.
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We noted earlier, that our control Hamiltonian and the equivalent interaction Hamiltonian
due to the classical driving field in the quantum feedback scheme, can be taken as a linear
superposition of σx and σy , see equation (10). In general, if the control Hamiltonian is written
in terms of the angle φ,

HIc(φ) ∝ (σx sin φ + σy cos φ) (83)

the stationary solutions of the evolution,

xss = 4αγ cos φ

γ 2 + 8α2
(84)

yss = −4αγ sin φ

γ 2 + 8α2
(85)

zss = −γ 2

γ 2 + 8α2
(86)

are contained in a plane Sφ , and lie on a curve parametrized by the ratio, α/γ , of the driving
field and the decoherence rate.

The plane Sφ , defined by x sin φ + y cos φ = 0, always contains the z-axis (i.e., always
includes both the ground and the excited states of the atom), and is rotated by an angle φ

around the z-axis in Bloch space, with respect to the reference x–z plane (Sφ=0). Thus the
effect of the driving field corresponding to HIc(φ) is to rotate the state of the atom around an
axis which is normal to the plane Sφ .

It is evident that if we employ different control Hamiltonians, HIc(φ), the stationary
solutions for the evolution of the spontaneously emitting two-level atom (without feedback)
are not restricted to the x–z plane. This result also applies to the quantum feedback scheme
of Wang et al and our open-loop control in the adiabatic case, enabling us to stabilize a qubit
in any pure state (except for equal superpositions) on the surface of the Bloch sphere.

In general, the atom can be driven reversibly to any arbitrary pure target state on the Bloch
sphere, by a combination of two control Hamiltonians. The first Hamiltonian rotates the initial
state to the ground state, and the second Hamiltonian rotates the ground state to the desired
target state. To return to the initial state, the order and the sign of the Hamiltonians need to be
reversed.

To demonstrate this idea, we have also simulated driving the qubit in the thermal
decoherence regime, using a control Hamiltonian proportional to σx . The same principle
applies if the control Hamiltonian is a linear superposition of σx and σy , though the computation
of the evolution operator UI and the density matrix elements is more intensive.

The graphs in figure 5 illustrate explicitly the driving of the qubit from the ground state
|1〉 to the excited state |2〉, using a control Hamiltonian H ′

Ic ∝ σx , cf figure 3 for the same
driving with HIc ∝ σy . The state of the qubit is confined to the y–z plane of the Bloch sphere
(and passes through the symmetric superposition state (|1〉 + i|2〉)/√2), thus the effect of
the driving field is to rotate the state of the atom around the x-axis. One hundred intermediate
states were used in this simulation to give a very smooth transition in a time t0 ≈ 1250�t ,
where �t is the time interval between control pulses. The qubit was then driven back to the
ground state via the conjugate anti-symmetric superposition (|1〉 − i|2〉)/√2, to complete a
continuous circle around the Bloch sphere.

To illustrate how a combination of two control Hamiltonians can be used to achieve any
arbitrary pure target state, suppose that we are given the initial state ψinitial = (|1〉 + |2〉)/√2,
in the x–z plane, as shown in figure 6. If we are asked to drive the qubit to the target state
ψtarget = (|1〉+i|2〉)/√2, in the y–z plane, our control strategy is as follows: first use the control
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Figure 5. The non-zero density matrix elements of a qubit driven from the ground state, |1〉, to the
excited state, |2〉. The population elements, Re{ρ11} and Re{ρ22}, show a monotonic transition,
whereas the coherences, Im{ρ12} and Im{ρ21}, increase to 1

2 as they approach the superposition
state on the equator of the Bloch sphere, and then decrease back to zero. This driving used 100
intermediate states, with only two control cycles allocated for each intermediate state, and the
maximum allowed strength of each control pulse was set by Imax = 0.01. All of the density matrix
elements change smoothly in the transition period, and the fidelity of the final state is greater
than 0.99.

Hamiltonian HIc ∝ σy to drive the qubit to the ground state, along the curve determined by
the intersection of the Bloch sphere with the x–z plane, and then use the control Hamiltonian
H ′

Ic ∝ σx to drive the qubit to the target state, along the curve determined by the intersection
of the Bloch sphere with the y–z plane.

5.2. Comparison between the open-loop and quantum feedback controls

The open-loop evolution in the thermal decoherence regime, is identical to the ensemble
evolution of the spontaneously emitting two-level atom (without feedback) modelled by Wang
et al [10], when the control Hamiltonian is proportional to σy . After quantum feedback is
introduced, the difference in the dynamics between the two schemes becomes evident: the
feedback directly changes the effective interaction of the atom with its environment, whereas
in the open-loop scheme, the control Hamiltonian, which is equivalent to the classical driving
field α in equation (63), affects only the atom.

Both the open-loop and the quantum feedback control schemes presented in this paper
aim to drive a qubit to an arbitrary target state, and then maintain that state. For simplicity,
we have restricted our attention to pure states, though in principle the initial and target states
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Figure 6. The effect of two orthogonal control Hamiltonians for pure states on the surface of the
Bloch sphere. The qubit is driven from the initial state ψinitial to the ground state |1〉 (solid arrow),
using a control Hamiltonian HIc ∝ σy . Next, a control Hamiltonian HIc ∝ σx is used to drive the
qubit from the ground state to the target state ψtarget (broken arrow).

may be mixed states in both schemes. The general case will be investigated in future work to
check our conjecture that it is only possible to drive to a target state that has a purity less than
or equal to the purity of the initial state.

The initial conditions are not important for the quantum feedback scheme, whereas with
open-loop control we must assume prior knowledge of the initial state. This requirement can
be relaxed for our scheme, if we are able to reset all initial states to the ground state, so that
we have a fixed starting point for the qubit. Finally, neither scheme can be used to maintain
an unknown state such as that obtained from a quantum computation. Both schemes can only
drive the atom to a known target state.

If the evolution in our model is the same as the ensemble evolution in the quantum feedback
scheme, the open-loop control can drive the qubit between any two pure states in the x–z plane
(see the results illustrated in figure 3). Therefore, our simulations have demonstrated that
open-loop control can effectively achieve the same result as the quantum feedback scheme.

We discuss in turn the (i) efficiency, (ii) feasibility and (iii) robustness of the open-loop
and quantum feedback schemes.

Efficiency. The final state actually achieved by the open-loop control scheme has a fidelity
which fluctuates during each control cycle, but remains very close to 1 with respect to the
target state, given that the maximum allowed strength of the control pulses is relatively small.
The transition times in our scheme are much shorter than the equivalent times for the quantum
feedback scheme, if the rate of the control pulses is higher than ≈1000γ .

Feasibility. The quantum feedback scheme relies on the assumptions of perfect detection
and zero delay time. In the case of inefficient detection, or in the non-Markovian regime
(non-zero delay), the final state is a mixed state [10]. The deviation from a pure target state is
noticeable even for relatively small violations, e.g. 95% efficiency or τF � 0.02γ −1, especially
for states close to the equal superposition states at the equator of the Bloch sphere, which are
inherently unstable. In terms of practical implementation, it is currently impossible to satisfy
these assumptions due to technological challenges.
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On the other hand, the requirements for the open-loop control scheme are in principle less
stringent. The time step between control pulses needs to be small relative to the decoherence
rate, which can be satisfied in a practical implementation, by choosing an atomic transition
with a decoherence rate that is low compared to available control pulse rates. The strength
of the control pulses and the strength of the system–environment interaction also need to be
small relative to the free Hamiltonian, in order to validate the first-order approximation of the
evolution operator obtained in equations (23) and (40). The other major assumption is that
the decoherence function is known accurately, which is essentially true for a single two-level
system such as a trapped atom.

Robustness. The stochastic model used in the quantum feedback scheme describes the
evolution of single quantum systems using quantum trajectories with an extrinsic noise source.
On the other hand, the spin-boson model assumes knowledge of the average decoherence
function and a deterministic evolution, which corresponds to an ensemble of quantum systems.

The stochastic model is a more realistic portrayal of the quantum dynamics of a single
spontaneously emitting two-level atom than the generic ensemble model we have employed.
Thus, in principle, the quantum feedback scheme is always going to perform more robustly
than any open-loop scheme, because it is inherently able to use feedback to control a single
qubit. Following the transition period, the effect of random fluctuations on the state of a single
qubit is effectively cancelled by the feedback.

The spin-boson model uses an average decoherence function describing the behaviour
of an ensemble of qubits. Our scheme cannot respond adaptively to random fluctuations for
a single qubit, which will result in much greater deviations from the target state, and the
open-loop control may fail completely, if the fluctuations are too large.

In conclusion, we presented an open-loop control scheme that drives a qubit to an arbitrary
target state with high fidelity, while maintaining quantum coherence throughout the process.

We have also shown that by using different control Hamiltonians, which are proportional
to a linear combination of σx and σy , the quantum feedback scheme of Wang et al can be
extended to stabilize the qubit in any known pure state, except for equal superposition states.

The performance of our scheme compares favourably with the performance of the quantum
feedback scheme proposed by Wang et al, with respect to target fidelity and transition time
indeed, in principle, both schemes can drive a qubit to an arbitrary pure target state, with high
fidelity, in a time of the order of 10γ −1 or less.

From a practical viewpoint though, while the quantum feedback scheme has the capability
to react to sudden fluctuations for a single qubit, its performance suffers from the strict
technical requirements for zero feedback delay and unit detection efficiency. The open-loop
control scheme has the additional advantage that the transition time can be lowered by simply
increasing the rate of the control pulses.
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